来源:37000vip威尼斯 发布时间:2023-12-13 作者: 阅读数:300次
主 题1:Local Times of Gaussian Random Fields
主讲人:美国密西根州立大学 肖益民教授
时 间:2023年12月18日周一下午14:30-15:30
地 点:第九教学楼326会议室
报告摘要:
Local times of a Gaussian random field X = {X(t), t ∈ R N } with values in R d carry a lot of analytic and geometric properties about X. They also arise naturally in the limit distributions of functionals of integrated and fractionally integrated time series or spatial processes, and in nonlinear cointegrating regression. In this talk, we study the local times of anisotropic Gaussian random fields satisfying strong local nondeterminism with respect to an anisotropic metric. By applying moment estimates for local times, we prove optimal local and global H¨older conditions for the local times for these Gaussian random fields and deduce related sample path properties. These results are closely related to Chung’s law of the iterated logarithm and the modulus of nondifferentiability of the Gaussian random fields. We apply the results to systems of stochastic heat equations with additive Gaussian noise and determine the exact Hausdorff measure function for the level sets of the solution. This talk is based on a joint paper with Cheuk Yin Lee
主讲人简介:
肖益民,密西根州立大学统计概率系终身教授,“长江学者奖励计划”讲座教授。2011年当选为美国数理统计学会会士。主要从事随机场及随机偏微分方程,分形几何,位势理论,随机场的极值理论,空间统计,非参数估计方面的研究,并取得了一系列具有国际先进水平的重要成果,在国际知名数学和统计杂志发表学术论文150余篇,在数十种主要国际会议上做大会专题发言;自1998年至今,主持或共同主持美国国家自然科学基金项目十二项,目前在研项目二项。担任SCI杂志《Statistics and Probability Letters》(统计和概率通讯)共同主编(2011-2022),现担任《Science in China, Mathematics》(中国科学,数学),《Illinois Journal of Mathematics》(伊利诺伊数学杂志)《Journal of Fractal Geometry》(分形几何杂志)的编委。多次担任美国国家自然科学基金概率和统计项目评审小组成员,以及加拿大,瑞士,德国,香港等国家和地区自然科学基金评审人。
主 题2:How Big Are the Increments of Airy Process?
主讲人:浙江大学数学科学学院 苏中根教授
时 间:2023年12月18日周一下午15:30-16:30
地 点:第九教学楼326会议室
报告摘要:
The Airy process is a real valued random process whose finite dimensional distribution is determined by a Fredholm determinant with Airy kernel. It was first introduced by Prah¨ofer and Spohn in the study of polynuclear growth model more than 20 years ago and has become a central object in the KPZ universality class. There has been some intensive research activities around the Airy process, some of which has rigourously proved its existence, time correlation and continuity, and more interestingly obtained the modulus of continuity. Compared to well-studied Brownian motions, Brownian bridges and even Ornstein-Ulenbeck processes, Airy process and its extension (i.e. Airy line ensembles) are new, so it is worthwhile further research. In this talk I shall briefly review some remarkable results in this field with focus on the increments of Airy sample paths, no detailed proofs are given.
主讲人简介:
苏中根,浙江大学教授、博士生导师。1995年获复旦大学博士学位,主要从事概率极限理论及其应用研究,在概率论主流专业杂志上发表学术论文近60篇,出版教材和专著4本。现已主持(完成)国家自然科学基金面上项目5项、教育部博士点专项基金(导师类)项目1项、浙江省自然科学基金杰出青年团队项目1项等。曾获教育部科技进步二等奖(3/3),浙江省科技进步(自然科学)二等奖(2/2),获宝钢优秀教师奖。与林正炎、陆传荣合作编著的《概率极限理论基础》(第一版)2002年荣获普通高等学校优秀教材一等奖,2021年(第二版)获首届全国优秀教材二等奖;与林正炎、张立新合作编著的《概率论》曾被列为普通高等教育“十一五”、“十二五” 国家级规划教材,主讲的《概率论(H)》课程2022年被认定为国家级一流线下课程。